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An overcomplete description is used to represent thermodynamic potentials, for 
a one-dimensional classical fluid mixture with next neighbor interaction, in com- 
pact closed form. In descriptions of this class, a thermodynamic potential 
depends not only on minimally sufficient control variables, but on others as well 
with respect to which it is stationary. Here, this is done first in the direct, or 
fugacity-controUed format, with the grand potential as the relevant generating 
function. It is then transcribed to an indirect, relative density functional format, 
with overcompleteness restricted to a set of grand potential densities. Poly- 
dispersity requires a separate treatment. Extensions outside of the range of strict 
one-dimensionality are discussed, as are several approximation methods. 

KEY' WORDS. Classical fluid; one-dimensional; nonuniform; fluid mixture; 
density functional. 

1. I N T R O D U C T I O N  

Theoretical many-body physics, like all other scientific disciplines, is an art. 
The art, I would argue, is that of constructing simple solvable relevant 
models, whose solutions are simply expressed. This is what one needs for 
the coextensive purposes of understanding, extension, extrapolation, and ... 
fill in the blanks. But the solutions, to be truly informative, must address 
a broad enough context, and the minimal conditions for this purpose 
involve knowledge of the reaction of the system to either self-generated or 
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external probes. In the realm of thermal equilibrium, our domain of choice, 
we need the system density "profile" in terms of an applied (static) poten- 
tials, but richer domains require more detailed information. 

Coulomb forces are basic to atomic and molecular matter. At the 
classical level that we will adopt, they are joined by quantum mechanically 
generated effective forces of shorter range. Jancovici (~) has transformed the 
study of systems controlled by Coulomb forces through the ramifications of 
his exact special two-dimensional solutions. I would like to return here to 
perhaps analogous studies of the short-range forces that have been left 
behind. The immediate context will be that of one-dimensional fluids and, 
even more restrictive, of those with only next neighbor interactions (e.g., 
transmitted by the intervening medium, or with second neighbors held out 
of range by hard cores), but the aim will be the study of particles with 
internal degrees of freedom--since strict one-dimensionality as well as the 
next neighbor restriction can be effectively broken this way--see later. 

The key concept is that of simplicity, which of course lies in the eyes 
of the beholder. It was found some time ago tz) that for a fluid of radius a 
hard rods, at reciprocal temperature fl, chemical potential/z, and external 
potential field u(x), the grand potential could be written as 

fll2[n] = -- �89 1-- 
- - a  

n(x + y) dy) dx, (1.1) 

where n(x) is the resulting density pattern. Since 12 is related to F, 
the intrinsic Helmholtz free energy (i.e., with external field energy 

n(x) u(x) dx subtracted out) 

( )- fll2[n] = 1-- f  n(x) on(x) dx flF[n] (1.2) 

or more simply by 

f l l2[nx]=(1-2  0 )  flF[nx] where na(x)=2n(x) (1.3) 

with the same relation between excess (deviation from ideal gas) quantities, 
F[n] can be recovered via 

flF~X[ n ] = - --~ flO~x[ n ;, ] d2 (1.4) 
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or here 

( ) flF ~ '= - - (n(x + a) + n ( x - a ) )  ln 1 -  n(x + y) dy dx. 
2 ~ a  

(1.5) 

Generalization to a mixture of additive hard cores of radius aat, is not 
difficult, (3) and is based upon the result 

/[ ; ] f lFex=-- �89 ( n + ( x ) + n - ( x ) )  1 -  ( n + ( y ) - n - ( y ) ) d y  dx 
~ 0 0  

where n+(x) = ~ nat(x +__ aat) (1.6) 
a t  

A number of approximate density functionals (4) follow the form (s) of 
(1.1), and of course the required density profile is produced in inverse 
version by 

a 

It(r) = 8F[ n ]/dn( r ) (1.7) 

equivalent to the stationary, actually minimum principle 

( f ) 6~On(r) F i n ] -  n(r) It(r) dx = 0 ;  (1.8) 

here It(r) = I t -  u(r) is the local chemical potential, that which uses the local 
potential as reference. 

Can one extend (1.5) to larger domains of interest? There is nothing 
holy about the thermodynamic potential/~[n],  anal in fact we recall that 
Jancovici's 2-dimensional one-component plasma had the canonical free 
energy 

1 ff(2v) f F2v[ u] = - ~  Tr In where ~jk = zJe--pu(r)z*k dZr, 

j, k = O .... , N - l ,  and z = x + iy (1.9) 

a direct profile relation resulting from 

n(r) = 6FN[ u]/Su(r) (1.10) 

And the one-dimensional nearest neighbor fluid has been solved (6) in terms 
of the entropy functional 
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- Sin, n2] = ~ f nz(1, 2)In nz(1, 2) dld2- ~ n(1)In n(1) d l  

+ f nR(1)In nR(1) d l + ~ nL(1)In nL(1) d l 

+(1-f  nR(1)dl)ln(1-InR(1)dl ) 

where nR( 1 ) = n( 1 ) - j" n2( 1, 2) d2, 

nL(1 ) = n( 1 ) - f n2(2, 1 ) d 2 (1.11) 

and n2(1, 2) is the nearest neighbor pair distribution, giving rise to both 
spatial profile and correlations via the relations 

t ip ( l )=  -8S/8n(1), flcp(1,2)=OS/8n2(1,2) (1.12) 

But the necessity of introducing 2-point conditions greatly weakens any 
assertion of simplicity. A theme that will color our discussion is that the 
use of a small number of auxiliary 1-point functions---densities of a 
sort---can both avoid complexity and create an instinctive physical context. 
We will see how these arise. 

The content of this paper can be summarized as follows. In Section 2, 
we treat the uniform thermodynamic limit of a mixture of species with 
nearest neighbor interaction, in one-dimensional space. Our aim is to show 
how the introduction of auxiliary fields simplifies the form of the controlling 
grand potential, as well as to motivate the form of the corresponding non- 
uniform mixture grand potential, which is derived in Section 3. This 
expression, while simple and technically correct, depends upon a number of 
additional fields, and they do not appear to have direct physical signifi- 
cance. In Section 4, we therefore reexamine the system from the "inverse" 
point of view, with density rather than external field as controlling 
variable, a format that has produced simple closed form solutions in the 
past. In fact, it turns out that relative density, relative to that of the corre- 
sponding ideal gas mixturemand with excess grand potential as thermo- 
dynamic generating functionalmis even more suitable, and requires only 
the addition of a set of grand potential densities to complete the descrip- 
tion, Eq. (4.30). The implicit restriction to non-singular Boltzmann factor 
matrix is removed in Section 5, and application made to the maximally 
singular ease of polydispersity. Finally, Section 6 indicates techniques for 
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extending these developments to systems with one-dimensional order but 
not one-dimensional geometry, as well as to even less restrictive situations. 

2. B U L K  M I X T U R E S  

There is no dearth of techniques available to treat uniform one-dimen- 
sional fluids with next neighbor interaction, all involving an isobaric 
ensemble in some fashion. We will study this problem in a manner most 
closely related to our eventual goals. Suppose we have a fieldfree one- 
dimensional next neighbor interacting mixture of species indexed by 
0c = 1,..., D, controlled by chemical potentials/~ = (lift) In z~, and resulting 
in densities n~. The ordered-particle interaction Boltzmann factors are 
given by 

w~,~,(x, y)  = e-#~ ' , /y -  x)O(y - x)  (2.1) 

where 0 is the unit step function. In a grand ensemble, the particles are sup- 
plied by an external bath, so the fact that they cannot in general pass each 
other is irrelevant: the index of the jth particle is determined statistically. 
The ordered configuration (xl, el), (x2, 0c2)...(xN, 0oN) in a box [0, L] with 
fixed particles of common species 0c as boundaries then has the weight 

E ZOtl'''ZotNWouxl (0, Xl) W~10t2(Xl, X2)'''WocNot(XN, L) 
0t 

(2.2) 

in the grand partition function, which can then be written in index-matrix 
notation as 

oo 

2L{z~} = Tr E f"" f W(0, Xl)ZW(Xl,  X 2 ) Z ' ' "  ZW(.,'I~N, L)d.,~,l''" dx N (2.3) 
N----0 

Introducing the pressure p conjugate to the volume L, we find at once the 
grand canonical isobaric partition function 

f? Y(zl. . .zD, p ) =  3L{Z~} e-#PZ'dL 

oo 
= Tr ~ ~,(pp)(z~(f lp))  ~v 

N--0 

= Tr ~( f l p l ( I - z f f , ( f l p l )  - l  

f ~o - PPYdy where wo, y( flP ) = w~,y( O, z) e (2.4) 
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Since the expected particle number is 

0 
<N> = Z  z~b~z In Y (2.5) 

the thermodynamic limit, < N> --. oo is equivalent to 

I -  z~,(flp) is singular (2.6) 

so that z#(flp) has maximum eigenvalue 1 ((2.4) would not converge 
if there were a larger eigenvalue). The matrix z~,([3p) has all positive 
elements, so that Perron-Frobenius theory tells us that the eigenvalue 1 
belongs (to within normalization) to a unique positive fight (column) eigen- 
vector r a function of tip, { z~}, and a unique positive (left) eigenvalue r 

z~(pp) r = ~, ~z~(pp) = r (2.7) 

At this stage, we can recall the thermodynamic relations 

z~,Oflp/Oz~, = ny (2.8) 

and apply zyO/Ozr to the first of (2.7), z~(#r = r to obtain zr8~r(#r + 
nrz~(~,'r162 where ~/=O#(flp)/Oflp. Multi- 
plying by r and summing, Cy(z#@)y + ny(r r  z~,O~/Ozy= O. 
But from (2.7), the last term vanishes, so that 

+ = 0 (2.9) 

We are free to normalize (r r as we wish, and shall do so as Cz#'~ = - 1. 
To this and (2.9) we append the result of applying the above operation to 
the second of (2.7), giving us the set 

r162  = - 1  (2.10) 

Of course, the thermodynamics of this system is completely expressed 
by (2.6). But (2.10) allows us to enter a format that extends almost 
painlessly to non-uniform fluids. It is that of constructing a multi-variable 
grand potential per unit volume t2(r r ~p;z) for which, as a function of 
the fugacities, 

n~, = --zy c3~s (2.11) 
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will hold but which is stationary with respect to all other variables: 

(2.12) 

We can write down this object at once: 

(2.13) 

for we see that Oflg2/Ofy=Oflg2/Offr=O reproduces (2.7) and identifies tiC2 
as - t ip ,  which satisfies (2.6), that Oflg2/Oflp = 0 correctly normalizes (~, ~) 
as in (2.10), and that (2.11) holds via the first pair, of (2.10). The advan- 
tage of the overcomplete description (2.13) with respect to the direct rela- 
tionship (2.6), e.g., in the form D e t ( I - z ~ ( f l p ) ) =  0, is that its mathematical 
structure is very simple. But while (2.13) is indeed brief, it is not physically 
transparent; this will gradually be remedied. 

A standard example is worth mentioning. Suppose an additive hard 
rod mixture, with 0cy relative core diameter of a~ + at; then 

Wo,~,(x, y)=O(y--x--ao,--a~,)  

1 e - -  flpacte - f l p a y  and (2.14) 

flg'2 = ~" (balpo~- ( E  ~o~z~e-pPa~ ", ~t~,e-'Opa',')/flp -- flp 

From (2.7) and (2.10), we have at once 
1 z~e -'apa~ 

Kl/2 y' z~,e-Pp'~,' 
1 e-PPa~ 

~ - K 1 / 2  Z e_pp,,., (2.15) 

n~= q s ~ ,  and K =  ~p 
1 Z ao, e-pp'~- 1 ~ z~,a~e -ppa" 

~ m  

2 ~_,e -'Opa" 2 ~.,z~,e -pp'' 

with tip = y' z o, e - pp'~ 

3. N O N - U N I F O R M  M I X T U R E ,  D IRECT  F O R M  

Our domain of interest is that of non-uniform fluid mixtures, and our 
immediate objective is to see how (2.13) must be extended to apply to this 
much richer domain. 

In the presence of a spatially varying external field uo,(x) in the form 
of the local chemical potential luo,(x)=po,-uo,(x) or relative fugacity 
z~(x)=exp fl, u~,(x), the system can be contained by the potential itself 
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without having to station boundary particles. Thus the bulk-targeted (2.3) 
is replaced by 

o o  

S [ z ]  = 1 + E f " " f z(x~) w(x~, x2)z(x2)- - -z(x~v)dx, . . ,  dXN (3.1) 
N - 1  

We will now extend the notation, so that w represents a matrix { wo, y(x, y)} 
with joint discrete and continuous indices, and z =  { z ~ ( x ) 6 ( x - y ) 8 ~ p }  a 
matrix which is diagonal on the full (~, x) space. We further define the 
constant vector 1" 

l~(x) = 1 (3.2) 

(and will use the same notation for vectors on any space), in which case 
(3.1) becomes 

o o  

s =  1 + 1 ~" Z (zw) u - '  ~1 
N-- -1  

= 1 + l r z ( 1 - - z w ) - l l  (3.3) 

Using the general ( A - ~ ) ' = - A - ~ A ' A  -~, the density profile is then 
obtained as 

no,(x) = 6 In -7/6 In zo,(x) 

= 1 r ( I _  ZW)-I (Oq X) Z~(X)(O~, X)(I-- WZ) -l  1/-7 

- s :  (x) z~(x) ~ +  (x) /3  (3.4) 

where 

-7+ - wz-7+ = 1, -7-  - -7 - zw = 1 r and -7 = 1 + 1 rz-7 + = 1 + -7-z  1 

(3.5) 

Note that because wo, y(x,y)--, .O as x ~ ~  or y ~ - ~ ,  and --*1 as 
x ~ - ~  or y ~ oo, then (3.5) implies that 

= ' + ( ~ )  = - 7 ~ ( -  ~ )  = 1 
~,,,t tX 

s + ( - o o )  = z : - ( ~ ) = z  
(3.6) 

We will return to (.7 + , -7- )  before long, but at the moment  it is more 
convenient to define 

~ = z - 7  + , !~ = - 7 -  (3.7) 
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so that 

~, - z w ~ ,  = z 1 
r _ ~ zw  = l ~ (3.8) 

and among several equivalent representations, we can write, maintaining 
the implicit continuum indices, 

nr=~y(zw@ + z l ) ~ / s  (3.9) 

We now seek an "overcomplete" description I2[q/, !~, 8;  z]. The require- 
ment ny(x)=-6flI2/~ In z~,(x) is certainly met, according to (3.4), by 

,a o '  = - ( r + ~,z l ) / Z (3.10) 

There is then a readily proved theorem (7) that tells us that there exists a 
A[ ~, ~, ~,] such that 

~ a = ( - ( C ,  zw~, + r  + ~[q,, r z ] ) / z  (3.11) 

both satisfies the remaining stationarity properties 6f21g~,,(x) = 
g12/6~,,(x)=gf2/O~=O and reduces to the correct f2[z] when ~, ~, 3 are 
expressed in terms of z. The first two conditions read, taking advantage 
of (3.8), 

~2 = ~ w  = ~ - 1 ~ 

6A (3.12) 

= zw4, + z l = q, 

so that 

a = r  + z j(_=) (3.13) 

o r  

~ a =  ( - ~ , z w ~  + ~ 4 , - ~ z l  - l~r + ~(z) (3.14) 

For the final condition Oflf2/08=O, we need A ' ( 8 ) = ( - - ~ z w ~ + ~ - -  
r  - l~q,)/z~ = - l ~ q , / z ~  = - l r z Z + / Z 2  = (1 - Z ) / Z  2, or d ( 8 ) =  - l n  8 -  
1/8. We conclude, on adding a constant, that (s) 

13~ = ( - ~ , z w ~  + r  - r  1 - 1 ~ + 1 ) / 8 -  1 - In  8 (3.15) 

and easily verify that this is numerically the same as - In ~_ as must be the case. 



258 Percus 

It is instructive to reduce (3.15) to the bulk case, say in a container 
from - L  to L. This follows by setting 

~ l ( x )  = ~ e  ( L - x ) ' @ ,  ~ l ( x )  = ~le (L +x)  pp, 3 -  e 2pPI (3.16) 

where ff and ~ are vectors on index (species) space alone, and so (3.15) 
implies 

lira 1 i.-.oo ~ fig2= -~z#(f lp)  r + ~ - t i p  (3.17) 

which is precisely (2.13), thus verifying the asymptotic validity of (3.16). 

4. INVERSE FORM, NON-SINGULAR KERNEL 

a. Background 

The formulation (3.15) has at least three obvious deficiencies. First is 
that, although we see from (3.8) and (3.9) that nr(x)=~y(x)~y(x)/~, it 
is not clear how to use this to reduce the overcompleteness to anything 
simpler. Second is that the physical significance of the nominally redundant 
~, ~ is obscure, and third that while (3.15) is stationary it certainly does 
not represent a minimum principle, i.e., it is not convex in its independent 
fields. A tempting procedure is to return to 3 + and 3 -  of (3.7), producing 
a more symmetric formulation of (3.11 ), 

fit2 = [ - 3 - z w z 3  + + 3 - z 3  + - 3 - z  1 - 1 r z3  + ] / 3 -  1 - In 3. (4.1) 

Then mimicking the bulk case by setting (X • are still vectors in index 
space) 

oo --I x I ~176 _ flto( t ) dt 3 - ( x )  = X - ( x )  e-Ix flto(t)at ~ ' + ( X ) = X + ( X )  e ~~176 " -- 

(4.2) 

results in a cieaner expression 

fled = - f Z-(X) z(x) e-I~P~(t)atw(x, y) z(y) X+(y) dx dy 

dr f X-(x)z(x)X+(x)dx-f X-(x)z(x)e s~-~p'~ 

- -  f z(x) e Ix~ flto(t)dt 3 + ( X )  d x  - -  1 dr f f l ( I ) ( t )  d t  (4.3) 
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But not only are the three difficulties unchanged. The additional grand 
potential density co(t) is not uniquely determined: only its integral is. We 
should do better. 

It is simplest to start afresh from (3.5), which we repeat 

3 + - w z 3  + = 1, 3 , -  --  ~ - z w  = 1 r (4 .4)  

and to rewrite (3.4) as 

= - ( x )  S + ( x ) / S =  v~(x) L-.'tX where vo`(x) = no` (x ) / z~(x)  (4.5) 

Here vo,(x) can be termed the relative density of species 0c, that is, relative 
to its ideal gas value. If the {vo`(x)} were to serve as the basic independent 
variables of the fluid description, then the pair (3  § 8 - )  could be reduced to 
a single field. Now E ~ zo`(x) dv~,(x) d x  = Y'. ~ (6no`(x) - no,(x) 6fllU o,(x) ) d x  = 
O N  + 6fl i2 = 6flI2 ~x, where/2 ~x is the excess grand potential, so that in this 
format, the profile equation will appear as 

z~( x ) = ,~aeS,~v~(  x ) (4.6) 

To build a representation to take advantage of (4.5), note that since a con- 
fined system will have vo`( +__oo)= 1, we can assure 3,~+(m)= ~ - ( - o o ) =  1 
by setting 

,.,_ _ix ~"~" 0t ( X ) =  lto`(X) 1/2 e ~176  d t  

=+(x )  = v~(x) ~a e - sx~  P~(')~' L__JO  ̀
(4.7) 

providing that we can thereafter enforce the required S ~ + ( - o o ) =  
~ (oo) = ~ by guaranteeing that 

f 
oo 

flI2 = -- In S = flmo`(t) dr, each e (4.8) 

Then, if (4.8) holds, we can replace the second of (4.7) by the more 
convenient combination 

_ ix_ ~og~t(t) art ~ ' + ( X ) / ~ ,  = YO`(X) 1/2 e 

The structure of the discrete-continuous 
w o ` ~ , ( y - x ) }  now becomes important. We know that 

(4.9) 

matrix { wo`r(x, y) = 

y - x ~  

as (4.10) 

y - -  X--~ - - o 0  

822/89/1-2-18 
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and it follows that if {fy(y)} and {g~(x)} are concentrated as functions, 
decaying sufficiently rapidly at + oo, then 

F~(x) = (wf)~ (x) 

= 2 f w~,(y-x)  fy(y) dy ~ as all 0c 
ot X -'* O0 , 

G~( y) = ( gw)y ( y) 

f l y ~  oo = ~ f g~(x) w~y(y- x) dx --. as all y 

y ~  - - ~  

(4.11) 

Thus, w is innately singular, as an operator. However, if (4.11) comprises 
its full restriction of range, we can still construct a generalized inverse w ~, 
unique if wl(x, y ) ~  0 as y--* - o o  is imposed, such that 

f = wIF, g = Gw" (4.12) 

satisfy (4.11) under the stated conditions on F and G. Furthermore, under 
the same conditions on F and G, w' is "transferable" i.e., 

~.d f G~x(x)(wIF)~(X) dx  = ~, f (Gw1)y (y) F~(y) dy 
ot y 

(4.13) 

One more property will be useful, and we will obtain it in a fashion that 
will also be useful. If we define the two-sided Laplace transform (as in 
(2.4)) 

f 
OO 

w~r(tiP) = w~r (0, y) e - ppy dy 
- - O O  

f 
o o  

l~21y(~p) = I --flpy w ~,~,( O, y) e dy 
-- 00 

(4.14) 

then from w'wh = h on concentrated h, or 

f f  wl(y X)  W ( Z - -  y) h(z) dz dy = h(x) (4.15) 

we have on taking Laplace transforms, 17~I(flp)I~;(flp)"h(flp)=h(flp) so 

~,(f lp)  = (~( /~p)) - I  (4.16) 
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Suppose we write w~r(0, y ) = 0 ( y ) +  f~r(0, y), where 

f~,(x, y)=(e-m',, (y-x)- 1) O(y-x) (4.17) 

is the short range one-sided Mayer function of the interaction. Hence 

1 
~(flP) = ~ I q r + ?(tip) (4.18) 

from which one readily verifies that 

76(flP)=Y-~(flP)-Y-~(flP) 1T~f-~(flP)/(flP+ l r f - ~ ( f l P ) 1 )  (4.19) 

Since wZ= limp_oo~Z(flp) 1, it follows at once that 

wT1 " ( 7 ( o ) - ' - f ( o ) - '  11Tf(o)- ' /1<?- '(o)1)1 =o, 

and similarly 1 rwl = 0 (4.20) 

b. D e t e r m i n a t i o n  of Qox 

Now we can proceed. Since S + ( ~ )  = 1 and 3~ + ( - oo) = =_ indepen- 
dently of ~, ~ + - 1 satisfies the conditions of (4.11 ), so the first of (4.4) can 
be solved as z 3 + =  wI(3  §  1 ) =  w ~  § and similarly with the second of 
(4.4): 

zE + = w/3 +, E - z  = ~ - w  I (4.21) 

Hence, from (4.5), 

n~,(x)=(3-w*)~, (x) S+(x)/S=3g(x)(wtS+/3)~, (x) (4.22) 

summing over 0c and integrating over x, we can write either of 

N= (S-w I) S + / 3 =  S -  (wZ3 + ) /3  (4.23) 

That the two versions in (4.23) are the same indeed follows from 
( S - w ' ) S  + = ( S - w ' ) ( 3 + - l )  + ( S - w ' ) 1  = [ ( S - l ~ ) w ' ] ( S + - l )  + 
S - z 1  = ( s - -  l ~ ) [ w ~ ( -  =+ - 1 ) ]  + s -  1 = S - ( w ' - = + ) -  l~'w'S + + s -  1 =  
S -  (wZE + ) - 1 rzS  + + S -  1 = E -  (w/E +). At any rate, according to the 
representation (4.7), we have 

, ~ z :  (x) / ,~vls)  = �89 ,~. ,~(x - s) z :  (x)/v..(s) 

,~(Z+ (x) /Z) / ,~v ls )  = �89 ,~. ,~(x - s ) (Z+ ( x ) /Z ) / v . ( x )  
(4.24) 
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and one sees, from either version in (4.23), that 

5N 1 
Ov,,(s) 2v,(s) 

[ s T ( s ) ( w ' S  + )~ (s)/S+ ( S - w ' ) ,  (s) ,.,~" + (s)/_~] (4.25) 

By virtue of (4.22), Equation (4.25) will give the desired ON/6vo,(x)= 
z~(x) to accord with fit2 ex =N+flt'2(co), but which form of (4.8) is to be 
used to satisfy 

( ~ f l ~ ' 2 e x / t ~ f l f O t r ( S )  =0 (4.26) 

is yet to be determined. We now need the analog of (4.24), 

,~S 2 ( x )/,~,&o A s ) = - ,~ ~( x - s) ,., - ( x ) 

,~(s + (x)/s)/,~co~(s) = ,~ ,O(x-  s) z + (x ) / z  
(4.27) 

Then, using the first version in (4.23), 

,~N/,~Zo~(s) = - ~  ~ =-(x)  O(x - s )  " Z ;  w~(x, y) (y)/Sdx dy "-'0" 
Y 

+ Z  f f  Z : ( x )  " s) ~'+(y)/Z,ixdy w~,,(x, y) O(y- ,..,,, 

= - ~  If 3~(x) O(x-s) wty(x, y ) ( Z f ( y ) -  1)/~dx dy 
Y 

- Y  ~ =-(x)  O(x s) " ,., ~ - w ~( x, y )/Z dx dy 

+ Y', ~ ( S T ( x ) -  1) wL(x, y) O(y -x )  z : ( y ) / Z d x  dy 

Sf Y ~ (x) " z ;  ~ = - " -  w , , y ( x ,  y )  ( y ) / Z ,  dx dy 

Sf + 5". .- ,~,=-(x)  w~(x, y) s + (y)/Z ,ix dy 
o~ 

-Y"  ~ ?  S ; ( x )  wZ~(x, y) , ix dy/S 
}, 
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or 

6N 
m Z s  (x) dx 

+ (S-w: )~  (y) r + ( y ) / Z  dy l , , , ,a  O .  

I? - (x) wZo.,(x, y) dx dy/Z (4.28) 

But Y'.r JJ~ Z j ( x )  t - - -  w,,y(x, y) dxdy  = limp_, o )~? JJs ~176 ''" ot (X) W tr~,(x,l y) x 
e-PPY dx dy = l imp  _. o Jy .,,,~ (x) - if, l (  flp) dx = limp _. o j y  ~'-(x)..,~ x 
f lPe-#Px'(f-~(flP) 1)~/(flP+ l r f - ~ ( f l P ) 1 ) ,  in the notation of (4.18), which 
is just 3~-(oo)()?-1(0) 1 ) , / 1 r f - l ( O ) 1 .  We therefore have 

6N/6po~.(s) = - 3 s  (x) ,tx 

+ (Z wt)~(y)  =+ - ,.,~ ( y ) / Z d y - 2 ~ 3 ~ ( o o ) / 3  

where 2,,. = (.7- ' (0)1), , . /1T7- ' (o)1 (4.29) 

which would be the same if the second version in (4.23) were used. 
We expect the first two terms of (4.29) to cancel, and it follows (recalling 

the genesis of 2,) that we want to choose 

fl~Qex(v, 03)= E ' f  V~(x)l/2e-ff"~176176 ,. y) eiLoo#,o,(,) dtvr(y ) U2 dx dy 
~y 

+ ~ f flog.(s) ds 2~ where 2 = lim 1 
, ,  a~-.o ~ ~'(Pp)-' 1 (4.30) 

We can then check the implied 

Ztr( S ) -- t~'2ex/t~lltr( S), 0-'t~'2ex/t~OOa(S) (4.31) 
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which become 

Zo'(S) = �89 Va( S)-1/2 e-I'-~176176 Z f w~(s, y)eI'-ooP'~ dy 
Y 

f _is_ + �89 -1/2 ~ v~(x)l/2e -I~-~p~ s) dx e ~ po~,(t)dt 

(4.32) 

and 

f ~  f _ix_ 0 = - -  ]/a(X) 1/2 e ~176176 dt 2 w~(x, y) e-IL~a'~ dx dy 
Y 

f ) f --I x ,Bcoa( t ) dtwI - I~o  #~o~(t) 1/2 + ~., v~(x) 1/2 e ~ ~(x, y) e atv,,(y) dx dy 
ix 

+ 2~( 1 _ -~w-( oo )/3) (4.33) 

The derivative of (4.33) with respect to s establishes the equality of the two 
terms in (4.32), and hence of the z-representation stemming from (4.32); 
then returning to (4.33), we have the required 3~-(oo)= S, all or. 

The conciseness of our expression (4.30) can be a bit deceptive. Con- 
sider for example a 3-component Widom-Rowlinson (9) mixture, with hard 
core self-interaction of range 1, mutual of range 2. Here then 

//O(y - x -  1 ) 
I 

w(x, y) = [O(y - x - -  2) 

\ O ( y - - x - 2 )  

O(y-x-2) o(y-x-2) I 
O(y-x-1) O(y-x-2) 
O(y-x-2) O(y-x-1) 

(4.34) 

If written in shorthand as 

Dw= - E  /i i/ l 
where D=O/Ox and E(x, y ) = ~ ( y - x - 1 ) i s  a displacement to the right, 
one finds at once that 

wl 1 ( 1 
= 3  1 \ Z + i + 2 E  1 

1 

1 1 / 
- - 1 - E  -1 1 D (4.35) 

1 - -1  - E  -1  
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Since ( 1 - E ) - ' ( x , y ) = Y ' . , , ~ o O ( y - x - a ) ~ O  as y ~ - ~ ,  this is the 
expanded form of w z to use; clearly 2 , =  1/3, and so (4.30) becomes 

o o  

~"2ex(ll'OJ)'~'3 Z (1 + ( - 1 ) " 2  "+ ' )  
n ---- 0 

x v~(x)l/2 e-JX~a'~ ~" -~x (v,(x + n) '/2 ,,o,(t) 
n 

_ ~  v~(x),/2 e_SX_~o,,o,r __d e,-| dx (v~(x + n) '/2 fltoot(t) d, 

n 

+2v~(x + n -  1) '/2 e -s;~+"-' p,o,~,) dt)] dx 

1 
+' j  Z f co~,(x) dx (4.36) 

which can be further simplified, but remains fairly complicated. 

5. S INGULAR KERNEL 

Eq. (4.30) is our basic result. With relative densities as control 
variables, the overcompleteness is confined to the introduction of a set of 
grand potential densities or local pressures (not necessarily with kinetic 
implications). Of course, concavity of ~ex is not guaranteed, and the struc- 
ture of w x can be quite involved. In fact, w z need not even exist except as 
a limit and this is the situation we now attend to. 

The example (1.6) of an additive radius a~ hard rod mixture, with 
w~y(x, y) = O(y - x - a~ - ay), is one in which ~y(f lp)  = (l/tip) e-~P"~e -~p'y 
is very much non-invertible. In fact, the simplicity of (1.6) is due primarily 
to this aspect. To accommodate singular Boltzmann factors or kernels, let 
us write 

w = w + w o w  - (5.1) 

where w + and w-  need not be square matrices on index space, but the 
small square matrix w0 is invertible on its space in the sense that ~o(flP) 
exists for tip v~ 0 and has an inverse W~o(flP). We will also impose normaliza- 
tion in the sense that 

w-1 =1, l~w + =1 ~ 

w+l =1, 1Tw- =1 ~ 
(5.2) 
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where ] and ] r are constant, equal to 1, in their associated spaces. Non- 
singular transformations on index space alone can always be inserted to 
guarantee (5.2), which one can show are consistent with w ~ r ( y - x ) l E o o  = 
Wo~r(Y-  x)l oo = 1 

~ o o  ~ 

To deal with (5.1), it suffices to set up an auxiliary system 

s g  = 1 + WoZoZg 

~ o  = 1 r + ~ o  Zo Wo 
(5.3) 

on the index space of Wo, where 

Zo = w - z w  + ; (5.4) 

in general, Zo is no longer diagonal on either index or continuum space. If 
we solve (5.3, 5.4) then on defining 

z + = w + Z g ,  z -  = Z o W -  (5.5) 

and using (5.2), we see that 

3 +  = 1 + w z S +  

Z -  = 1 r + ~ - z w  
(5.6) 

as desired. Furthermore, we have 3 = 1 + 1 r w z ~  + = 1 + 1 rw + Wo w - z w  + S +, 

and similarly with ~ = 1 + 3 - z w l ,  so that 

--- 1 -I- 1 rWoZo-~ = 1 + ~ o  Zo Wo 1 (5.7) 

In other words, the reduced space (5.3, 5.7) quite directly imply the solu- 
tion of the full problem. 

To take advantage of (5.3, 5.7), let us go back to an earlier stage of 
the extended density space development, (~a) that which focuses on the 
intrinsic Helmholtz free energy F, and perturb w so that it is no longer 
singular. We want to be able to reproduce (3.4) and (3.5) in the form (1.7) 
and with the boundary  conditions (3.6): 

, . . , +  , - , _  - 1 T  " - wzY.  + = 1 ,  " - =  z w  = h,,,a 

Z~+(oo) = Z ~ - ( -  oo) = 1, Z + ( -  oo) = ~,~-(oo) = 3 

z~,(x) = n~(x) Z / Z : ( x )  Z + ( x )  

n~,(x) =OF[n]/Ono,(x)  

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d) 
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m 

by setting up an overcomplete free energy F[n, 3 +, 3 - ,  3 ]  which is 
stationary with respect to 3 +, 3 - ,  ~". The strategy of (3.11) et seq. is 
appropriate. We start by writing 

~F = Y'fn=(x)[lnn=(x) - 1 + In S -  In ,..,~=' + (x) - In ,.,~='-(x)]dx 
I x  

+ z l [ 3 + ,  S - ,  3 ]  (5.9) 

so that (5.8d) reproduces (5.8c), and then sequentially determine zl by 
requiting first (5.8a), in the form (4.21), and then (5.8b) to be reproduced. 
Watching boundary values as we did in Sec. 4 it is easy to verify that 

[3F[ n, S +, ,z , S] 

- -  ~ _[ n~(x)[ln n~(x) - 1 + In S -  In -~='-(x) - In S + (x) ] dx 
I x  

q l r  

_ ( 1 + , )  
+ S  + 3  ( - ~ )  ~ + ( ~ ) - - - S .  - ~ )  - l n 3  (5.10) 

will do the trick, and that either order of application of w z can be used. But 
maintaining the relations (5.1, 5.2, 5.5) for our regularized w, we have 
3 - w ~  + = S  O w- (w+wow-) :w+3~ = 3  0 - w ~ S ~ ,  as well as 
~'• + ~ )  = 3 ~ (  + c~ ). Thus, (5 10) translates to L'- 'A CX m ~ ~ 

,8ff[n, Z+, Z - ,  Z] 

= ~  ~n~(x)[lnn~,(x)-- 1 + In 3 - - 1 n ( S o  w-)~ (x)--ln(w+3~)~,(x)] dx 
o~ 

+ - 2 3 j w ~ 3 ~ - l n 3 + 3 j ( - o o )  3 ~ ( o e ) -  1 3 g ( - o o )  (5.11) 

and we are free to take the limit as the range of w + and domain of w -  con- 
tract, equivalent to rows, and columns respectively, becoming zero, rendering 
them singular and wo acting on the reduced index space. 

The expression (5.11) can now be manipulated to produce a form 
analogous to (4.30). Let us however start with the simplest version, that in 
which the interacting mixture is polydisperse in the sense that w on index 
space, or equivalently #(/~p), is of rank 1, so we may write 

wo,~,= w~ + WoW 7 (5.12) 

each factor being a translation-invariant operator on physical space, but 
w § a column vector, Wo a scalar, and w -  a row vector on index space. All 
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interactions are in a way images of the basic Wo. We then follow (4.7) by 
setting 

-ix_ ~o(X)  = vo(x) 1/2 e ~176176 dt 

3 ~ ( x )  = Vo(X) 1/2 e-17 P~ott)dt (5.13) 
.. _I ~- 
" - e | ]~o(t) at 

so that boundary conditions are automatically satisfied, and, removing the 
ideal gas component, conclude that 

~FeXE n, Yo, (DO] = f :  Vo(X) 1/2 eI~ aO, o,,)a~WIo(x, y) 1,,o(y) 1/2 dx dy + f ~(Do(S ) (IS 

-~. ,  f nat(x)[ ln f vo(y)l/2 eIL|176176176 x) dy 
at 

+In f w+(x, y )vo(y)  1/2 eJLooao, ot,)a~ dy] dx 

Note that from fl/z~X(x)=&F~X/3n~(x), we now have 

(5.14) 

vat(x) = f vo(y) 1/2 e-F-~a~ot')a~ws x) dy 

f -IL #~fs) as x w+(x, y) vo(Y) 1/2 e ~ dy (5.15) 

The additive polydisperse case is particularly simple. Here, the inter- 
actions differ only by the size of a central core: 

which implies that 

watr( y -- x) = wo( y -- x -- aat - ar) (5.16) 

w + (x, y) = w~- (x, y) = t~(y - x - aat) (5.17) 

reducing (5.14) to 

DFexEn, Vo, ,Oo'1 = Vo(X)'/2 el~a~ , y )vo(y) ' /2dx  dy + f f  ~COo(S ) ds 

--:n ) + flCOo(S) ds dx 

- f n (x) �89 Vo(X) + flO)o(S) dx (5.18) 
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in the notation of (1.6). In principle, stationarity of (5.18) with respect to 
Vo and COo allows Vo and COo to be found in terms of n § and n - ,  hence 
determining the strict density functional flF% In particular, this is trivial 
for the pure hard core case Wo(X, y)= O(y-x), WZo(X, y )=~(y-x ) ,  where 
one finds at once 

f 
x 

pure core" Vo(X) = 1 + (n_(y)-n+(y)) dy 
~00 

Wo(X) = �89 + n +(x))/Vo(X) (5.19) 

If w is of higher rank than one, the only modification in form is that 
one must again impose the condition that flI2 = ~ flco~(s)ds is independent 
of ~ by suitable Lagrange parameters: 

f l F e x [  n ,  Vo ,  COo] = E f f  Vow(X) me-lL~~176 
at), 

f [ f -V_ p,oo,(~) x) - 2  nat(x) In Z Vo),(Y) u2 e oo d~w;(y, dy 
at at 

+ 'n f ~, w=(x, y) vo(y)'ae-l~-~P~'"~ dy 1 
y 

+ ~ 2. f flCOo.(s) ds (5.20) 

and exactly as in (4.29), this leads to 

2 = l i m  1 1 (5.21) 

6. EXTENSIONS AND APPROXIMATIONS 

Strict spatial one-dimensionality is most often an idealization. One- 
dimensional ordering need not be. Particles with hard cores in a sufficiently 
constrained channel cannot change their order, but they do have an "inter- 
nal" degree of freedom, that of transverse location, say t. Under these 
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circumstances even an isotropic interaction Boltzmann factor for a simple 
fluid, w ( l r -  r'[), should be written as 

W t t , ( X  , X') = W([ (X --  X') 2 + ( t  - t ' )  2 ] 1/2) O(x' - x )  (6.1) 

where r =  (x, t), and regarded as representing a continuous index mixture. 
The only formal modification in our discussion is that sums, as in (4.30), 
must now be replaced by integrals. Of course ordering by a Cartesian coor- 
dinate may be inappropriate--for a fluid in a bent tube, the longitudinal 
and transverse variables should instead be taken as curvilinear coordinates. 

It is possible to break the condition of strict ordering, albeit weakly, 
by going to one further level of complexity. (1~ For example, if a channel 
is broad enough to allow two particles to pass each other, but not three, 
one can take as units successive pairs of particles, say j and j + 1 in order, 
with xj less than xj+], as the location of the pair, but dj = x j + l - x ,  tj, and 
uj = tj+l as internal degrees of freedom of the pair. Thus one has particles 
Xj = (x j;  dj, tj, uj), perhaps simplest with pair-pair Boltzmann factor 

watua,,,,,(x, x ' ) = ~ ( x ' - x - d )  ~(t'-u) O(x'-x) (6.2) 

that identifies the common particles of two pairs and fugacity 

Zat,(x) =z(x)  w([d 2 + (t-u)2) m) O(d) (6.3) 

to pick up the full interaction, which can alternatively be included in (6.2). 
A very similar format applies to the case of second neighbor interaction 
among ordered particles. 

What (6.1, 6.2, 6.3) put in evidence is a substantial increase in com- 
plexity of the thermodynamic potential that describes the system. This is 
hardly a disaster, since the associated variational principle allows for 
intelligent ansatze (11) for the fields to be inserted. There are however other 
approximation techniques that one should he aware of in the present con- 
text. One depends upon the observation that the rank one, or polydisperse 
case (5.12) very greatly reduces the computational complexity. This 
suggests replacing ~r(flp) by its maximal eigenvalue component, i.e., the 
form ~+(flp)(1~tip) ~( f lp)  as leading approximation, and then picking up 
additional eigenstates as correction terms. The leading approximation has 
characteristic deficiencies in 2-phase systems (which do exist in one dimen- 
sion (12)) which will be reported at a later date. 

Another suggested approximation technique is in the Galerkin 
class. (13) In its simplest form, we can take the single component form. (14) 

(4.30) of ~ex and use it as a model for arbitrary interactions in higher 
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dimensional space. Modelling wi(x, y)eI~P,o{oat is hardly unique, but if 
one is willing to fit both a one-variable and two-variable function by using 
empirical distribution data for the bulk fluid, or low density expansion 
data, the expression 

flOex[v, O)] = f f  Y(X) 1/2 W ( y - - x )  eJK(x- t ' y - t )# ' { t )a tv (y )  1/2 dx  dy 

+ f fie)(t) dt (6.4) 

would be suitable. Even simpler, and still consistent with its progenitor 
(4.30) would be the one-variable model 

K ( x -  t, y -  t) = K ( ( x -  t). ( y -  t)) (6.5) 

In summary, what has been accomplished is the exact representation, 
in assertedly physically transparent form, of a thermodynamic potential 
that allows one in principle to solve for the structural properties of a highly 
specialized but still quite large class of non-uniform classical fluids. 
"Technical details," such as establishment of convexity, of course remain. 
But more importantly, if this is to be the beginning of a useful program, the 
effective restriction to short range forces must be overcome, and it is the 
work of Jancovici that gives us hope that this can be done in a meaningful 
way. 
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